Preconditioning of adipose tissue-derived mesenchymal stem cells with deferoxamine increases the production of pro-angiogenic, neuroprotective and anti-inflammatory factors: Potential application in the treatment of diabetic neuropathy
نویسندگان
چکیده
Diabetic neuropathy (DN) is one of the most frequent and troublesome complications of diabetes mellitus. Evidence from diabetic animal models and diabetic patients suggests that reduced availability of neuroprotective and pro-angiogenic factors in the nerves in combination with a chronic pro-inflammatory microenvironment and high level of oxidative stress, contribute to the pathogenesis of DN. Mesenchymal stem cells (MSCs) are of great interest as therapeutic agents for regenerative purposes, since they can secrete a broad range of cytoprotective and anti-inflammatory factors. Therefore, the use of the MSC secretome may represent a promising approach for DN treatment. Recent data indicate that the paracrine potential of MSCs could be boosted by preconditioning these cells with an environmental or pharmacological stimulus, enhancing their therapeutic efficacy. In the present study, we observed that the preconditioning of human adipose tissue-derived MSCs (AD-MSCs) with 150μM or 400μM of the iron chelator deferoxamine (DFX) for 48 hours, increased the abundance of the hypoxia inducible factor 1 alpha (HIF-1α) in a concentration dependent manner, without affecting MSC morphology and survival. Activation of HIF-1α led to the up-regulation of the mRNA levels of pro-angiogenic factors like vascular endothelial growth factor alpha and angiopoietin 1. Furthermore this preconditioning increased the expression of potent neuroprotective factors, including nerve growth factor, glial cell-derived neurotrophic factor and neurotrophin-3, and cytokines with anti-inflammatory activity like IL4 and IL5. Additionally, we observed that these molecules, which could also be used as therapeutics, were also increased in the secretome of MSCs preconditioned with DFX compared to the secretome obtained from non-preconditioned cells. Moreover, DFX preconditioning significantly increased the total antioxidant capacity of the MSC secretome and they showed neuroprotective effects when evaluated in an in vitro model of DN. Altogether, our findings suggest that DFX preconditioning of AD-MSCs improves their therapeutic potential and should be considered as a potential strategy for the generation of new alternatives for DN treatment.
منابع مشابه
From a Chemical Matrix to Biologically/Biomechanically-Defined Matrices-Optimizing/Correlating Growth Rate and Differentiation Potential of Human Adipose-Derived Mesenchymal Stem Cells
Use of Adipose Stem Cells (ADSCs), obtained easily in a relatively less invasive manner (abdominoplasty) and characterized by flow cytometry, is a classical approach in stem cell research and clinical aspects. Other techniques such as isolation of the cells from bone marrow aspirates (1) are rather more invasive. Further, it is pertinent to point out that growth rate, differentiatio...
متن کاملP144: Therapeutic Application of Mesenchymal Stem Cells in Spinal Cord Injury Treatment
Spinal cord injury (SCI) is a neurologic disorder that have a significant impact on quality of life, life expectancy, and economic burden. SCI leads to irreversible neuronal loss and ultimately leads to paralysis. Mesenchymal stem cells (MSCs) are a promising source for cellular therapy because they have possessed the capacity of self-renewal and differentiation to several distinct mesenchymal ...
متن کاملP 141: Mesenchymal Stem Cells as Treatment in Neuroinflammatory Disease
Mesenchymal stem cells can be obtained from deferent tissues like adipose tissue, umbilical cord, placenta, skin, bone marrow, etc. These cells have regulatory effects on all types of immune cells such as dendritic cell, natural killers and lymphocytes. Mesenchymal stem cells induce inhibitory phenotypes of Antigen Presenting Cells (APCs) following their activity. They also change T cells pheno...
متن کاملDifferentiation of Human Adipose Tissue-Derived Mesenchymal Stem Cells into Insulin Producing Cells Using Minimal Differentiation Factors
Background & Aims: Type 1 diabetes, or insulin-dependent diabetes, is an autoimmune disease in which pancreatic beta cells are destroyed by the immune system. Hitherto, no definite treatment has been found for this condition. Mesenchymal stem cells (MSCs) are multipotent, self-renewing cells that have the ability to differentiate into mesodermal tissues. This ability has attracted the attention...
متن کاملSkin wound healing following the spray of human abdominal adipose tissue-derived mesenchymal stem cells in diabetic male rat
Introduction: Diabetes is rising worldwide and impaired wound healing is one of its major complications. This study aimed to determine the effects of adipose-derived mesenchymal stem cells (MSCs) on wound healing in diabetic rats. Materials and Methods: In this experimental study, abdominal adipose tissue was obtained from 10 patients who underwent an abdominoplasty. MSCs were isolated from adi...
متن کامل